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Abstract
In this work, we compared several available crystal–melt interfacial free energies via
homogeneous nucleation rates in a pure Lennard-Jones model system using both model fitting
and numerical methods. We examined the homogeneous nucleation temperature obtained from
the classical nucleation theory using the available interfacial free energies from three different
methods as inputs, i.e. the free energy integration method, the interface fluctuation method and
the classical nucleation theory based method. We found that the critical temperature obtained
by using the interfacial free energy calculated recently (Bai and Li 2006 J. Chem. Phys. 124
124707) is in better agreement with that obtained from spontaneous crystallization in an
independent molecular dynamics simulation. The discrepancies among the interface energies
are discussed in light of these results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The crystal–melt interfacial free energy is an important
physical quantity for solid–liquid phase transitions. It is
directly related to the nucleation kinetics and crystal-growth
morphologies [1]. However, unlike liquid–vapor and solid–
vapor interfaces that are accessible easily in experiments,
the crystal–melt interface is inherently difficult to obtain as
it lies between two condensed phases (i.e. solid and liquid
phases) [2, 3]. Moreover, the crystal–melt interfacial free
energy is very weak. Generally, its magnitude is only several
tens of millijoules per square meter for most metals [1].
Therefore, it is difficult to accurately determine the crystal–
melt interfacial free energy experimentally. Turnbull and
coworkers [4, 5] developed an experimental method to extract
the crystal–melt interfacial free energy from homogeneous
nucleation rates. Based on the experimental results, Turnbull
proposed an empirical relation between the interfacial free
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energy and the latent heat of fusion [6]:

γSL = αρ2/3(�Hf/Na), (1)

where γSL is the solid–liquid (or crystal–melt) interfacial
free energy, α is a coefficient whose value is 0.45 for most
metals and 0.32 for most nonmetals, ρ is the atom number
density of the crystal, �Hf is the gram atomic heat of
fusion, Na is Avogadro’s number and thus �Hf/Na is the
enthalpy per atom. Although in this method [4, 5] the
heterogeneous nucleation can be suppressed to a large degree,
the catalysts (e.g. container walls, impurities, etc) could still
play significant roles in affecting the homogeneous nucleation
rates [6]. More advanced methods such as containerless
processing [7] have been developed recently. Although the
heterogeneous nucleation can be suppressed further with these
advanced techniques, it is still difficult to obtain the melt–
crystal interface free energy accurately.

An alternative way to obtain the crystal–melt interfacial
free energy is to use computer simulations in which catalyst
effects can be ruled out completely. Over the past twenty years,
different methods [8–15] have been developed. Broughton
and Gilmer [8] devised a free energy integration scheme to
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Table 1. The solid–liquid interfacial free energies (in units of ε/σ 2) calculated with different methods for a standard Lennard-Jones model
system. The estimated errors in the last digits are indicated by the numbers in parentheses. (Note: LJ: Lennard-Jones; HD: hard-sphere).

Method γ 2
SL/ε

Morris and Song [13] Interface fluctuation method (LJ) 0.362(8)a

Davidchack and Laird [10] Reversible work integration (HD, cleaving walls) 0.360(1)a

Broughton and Gilmer [8] Reversible work integration (LJ, cleaving potential) 0.350(2)a

Davidchack and Laird [26] Reversible work integration (HD, cleaving walls, recent work) 0.334(3)a

Davidchack et al [17] Interface fluctuation method (HD, recent work) 0.326(10)a

Turnbull [6] Empirical estimation from experiments (equation (1)) 0.330b

Bai and Li [15] Classical nucleation theory based approach (LJ) 0.302(2)

a The interfacial free energy is approximated by taken the simple arithmetic mean over (100), (110) and
(111) orientations. More accurate values can be calculated by using the expressions in [17] because the
values for three orientations do not have the equal weight for the calculation of the orientationally
averaged interfacial free energy.
b For nonmetals, the interfacial energies can be expressed empirically as γsl = 0.32�Lnρ

2/3
s [6]. For a

Lennard-Jones system, �Ln = 1.075ε is the latent heat per atom and ρs = 0.94/σ 3 is the number density
of the crystal [15].

calculate the crystal–melt interfacial free energies of different
crystallographic interface planes directly. They applied an
external ‘cleaving potential’ to join a bulk crystal and a bulk
liquid and calculated the reversible work in this process.
The ‘cleaving potential’ was chosen carefully to make the
combination process reversible. Davidchack and Laird [9, 10]
extended this method by introducing two cleaving walls for
both hard-sphere [9] and Lennard-Jones [10] systems. In
order to avoid the inconvenience of choosing the reversible
path, Mu and Song [11] used a multistep thermodynamic
perturbation method in which the exact reversible path is
no longer needed. However, the path cannot be chosen
arbitrarily and still needs to be close to the reversible path
in order to achieve convergence. Hoyt et al [12] developed
an interface fluctuation method or capillary fluctuation method
to calculate the anisotropic interfacial free energies from the
fluctuations of rough crystal–melt interfaces. This method
has been tested in embedded-atom-method (EAM) [12, 16],
Lennard-Jones (LJ) [13], hard-sphere [17] and molecular [18]
systems. Different from the aforementioned methods in which
the simulations need to be performed at the equilibrium
melting temperature with a planar interface, the present
authors [14, 15] developed a method based on the classical
nucleation theory with a curved interface to calculate the
crystal–melt interfacial free energy. In our method, we
‘inserted’ spherical crystalline nuclei of various sizes into an
undercooled liquid and determined their (unstable) coexistence
temperatures. The interfacial free energy was extracted by
fitting the relation between the critical nucleus size and the
critical undercooling. This method therefore produces the
interfacial free energy averaged over all orientations and a
wide range of undercooling temperatures. In other words,
the information of the anisotropy in the interface free energy
is lost. However, this problem may be rectified by using
faceted nuclei with specific crystallographic planes on the
interface [19, 20]. As we discuss later in this paper, clearly,
the use of spherical nuclei is an approximation because the
spontaneously formed crystal nuclei in simulations [21] and
experiments [22] are found to be nonspherical and the nucleus
surface is very rough at deep undercooling. Thus, the ramified
morphologies of the nuclei may challenge the assumption.

At shallow or moderate undercooling, most nuclei formed in
the LJ systems do not have ramified geometries [23]. To
put it differently, the nuclei seldom have rod-like or disc-
like shapes. In addition, the anisotropy in the interfacial
free energy in a Lennard-Jones model system is shown to
be very weak [8, 10, 13] and the contribution from the
datum points obtained at the deep undercooling is limited.
Therefore, the variation of the interfacial free energy caused
by the ramified nucleus morphologies at deep undercooling is
expected to be small. For these reasons and for the lack of any
effective ways to treat the nuclei with stochastically varying
shapes and sizes, the assumption of spherical nuclei is still
a reasonable approximation. In the past, classical nucleation
theory has been used widely and successfully for analyzing
nucleation [21, 22, 24, 25]. We shall stick to this approximation
in the rest of this work.

The crystal–melt interfacial free energies calculated via
different methods in a standard LJ system or a hard-sphere
system are shown in table 1. All the interfacial energies
are converted to the values in LJ unit. Note that the
interfacial free energies shown in the first five rows are the
average values (arithmetic means) over (100), (110) and (111)
crystallographic planes. Turnbull’s experimental estimation
(equation (1)) is also shown for comparison. The value
obtained by Turnbull has been used extensively in the past
to validate the theoretical calculations [8–15]. The tabulated
data show a wide variation. If we consider Turnbull’s
experimental estimation as a ‘standard’ reference, we can
see that the interface free energies obtained from the free
energy integration method and the interface fluctuation method
(the first three rows in table 1) are about 9% larger than
Turnbull’s value, whereas our result is about 9% smaller,
or the lowest among the available data. The difference in
the interfacial free energy obtained from different approaches
is large enough to warrant an in-depth consideration. (We
shall mention in passing that recently Davidchack et al have
used an improved reversible work integration method [17] and
interface fluctuation method [26] to re-calculate the crystal–
melt interfacial free energies in hard-sphere systems (the fourth
and fifth rows in table 1). Also the new results are about
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7%–10% smaller than their previous values and are very close
to Turnbull’s estimation.)

There has not been any ‘first principles’ approach or direct
way that could give an exact value for the interfacial free
energy. In order to examine the origin of the discrepancy
among these results, we have to use indirect ways. One way
is via a homogeneous nucleation rate, as Turnbull did in his
famous experiment [4, 5]. As shown below, the difference
among the interfacial free energies can be observed very
sensitively through the crystallization nucleation rate. In this
paper, we shall address the difference through the connection
between the interface free energy and the homogeneous
nucleation rate.

2. Theory and modeling fitting

According to classical nucleation theory (CNT) [1], the
homogeneous nucleation rate is expressed as

I = I0 exp(−�G∗
hom/kBT ), (2)

where I0 is a prefactor [4–6, 27] of the order of
1032−33 cm−3 s−1 and �G∗

hom is the homogeneous nucleation
barrier. In classical nucleation theory, �G∗

hom can be calculated
through the following relation [1]:

�G∗
hom =

(
16πγ 3

SLT 2
m

3L2
V

)
1

(�T )2
. (3)

In equation (3), Tm is the equilibrium melting temperature
at which a bulk solid and a bulk liquid coexist with a flat
interface, LV is the latent heat per volume and �T = Tm −
T (T � Tm) is the undercooling. Equations (2) and (3)
show that the nucleation rate is related to the undercooling
temperature exponentially, as shown in figure 1 [1]. When
the temperature is high (or the undercooling is small), the
nucleation rate is almost zero. But as �T approaches the
critical undercooling �T ∗, the nucleation rate increases very
rapidly. The temperature corresponding to the rapid change
in nucleation rate, as shown in figure 1, marks the onset of
homogeneous nucleation. For convenience, we define this
critical temperature as a spontaneous nucleation/crystallization
temperature in a homogeneous nucleation. How to determine
�T ∗ operationally will be discussed shortly.

On the other hand, the nucleation rate is related sensitively
to the interfacial free energy as the nucleation rate varies
exponentially with γ 3

SL (equation (3)), or

I = I0 exp[−A(T )γ 3
SL], (4)

where A(T ) = (
16πT 2

m

3L2
V

) 1
kBT (Tm−T )2 is a function of the

temperature T . Therefore, a slight variation of γSL can change
the nucleation rate significantly. In other words, the relation
between the nucleation rate and the interfacial free energy
can be used to examine the different interface free energies
calculated using the aforementioned methods. Note that CNT
may not be valid for some real material systems nor under very
deep undercooling [23]. In this work, we simply invoke this

Figure 1. Schematic illustration of the relation between the
homogeneous nucleation rate (I ) and undercooling (�T ). �T ∗
represents the critical undercooling for the onset of homogeneous
nucleation [1].

approach to make comparisons among the interface energies in
a self-consistent way.

To this end, first we used some interfacial free energies
listed in table 1 as inputs for equation (4) to estimate the
respective homogeneous nucleation temperatures. The results
are shown in figure 2(a). To make it representative, we choose
three interfacial free energies as inputs: our calculated value of
0.30 ε/σ 2, Turnbull’s empirical estimation of 0.33 ε/σ 2 and
a value of 0.36 ε/σ 2 which is typical for the others’ methods,
where ε and σ are the LJ parameters to be explained below.
For an LJ system, we use LV = 1.024 ε/σ 3 and Tm =
0.618 ε/kB at zero external pressure [15]. From equation (4)
and three representative interface free energies, we calculated
the respective nucleation rates as a function of temperature
(figure 2(a)). From figure 2(a), one can find that the different
interfacial free energies yield quite different nucleation rates.
Apparently, the predicted nucleation rate at deep undercooling,
using the interfacial free energy calculated through a planar
interface (denoted as the others’ method), is several orders of
magnitude smaller than Turnbull’s experimental result. This
is in good agreement with Baez and Clancy’s work [28] in
which they also found that, using the interfacial free energy
obtained from a planar interface, the predicted nucleation
cluster populations were underestimated to several orders of
magnitude. In passing, we should mention that the estimated
nucleation rates in figure 2(a) are normalized values (i.e. I/I0).

In order to give more quantitative assessment for the
differences in the interfacial free energies, we need to have
an estimate of the critical nucleation rate or critical value of
I/I0 at spontaneous nucleation. In the following, we give a
simple argument for the critical nucleation rate. Aga et al
[29] measured the nucleation time and number of critical
nuclei at deep undercooling for aluminum. In the second
figure of their work, the nucleation time is about 50 ps (taken
from the well-fitted Shi et al’s theoretical curve [30]) and
the number of nuclei is about 4 for a system consisting of
16 384 atoms (or 16 × 16 × 16 unit cells) at deep undercooling
(T = 500 K, �T/Tm = 0.47). Since the aluminum
lattice constant is about 0.405 nm, the box length of the
simulation system is 6.48 nm. Therefore, the nucleation
rate is 4/50 ps/(6.48 nm)3 = 294 × (10 nm)−3 ns−1 in
their work, meaning that there are 294 critical nuclei in a
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Figure 2. (a) The theoretical prediction of the nucleation rates (equation (4)) with different interfacial free energies as inputs. The dashed line
indicates the critical nucleation rate, I/I0 = 10−5 or I = 1 × (10 nm)−3 ns−1. The arrows indicate the corresponding homogeneous
nucleation temperatures with different interfacial free energies as inputs. (b) The hysteresis loop of the enthalpy in the heating–cooling
process. The cooling rate is 3.33 × 109 K s−1 and the system has 2048 atoms. The arrow indicates the spontaneous crystallization temperature
of the pure liquid.

simulation box of 10 nm3 per nanosecond (ns). This is the
typical observable nucleation rate in MD simulation. In our
work, we take the commonly used prefactor [27] from the
classical nucleation theory, I0 = 1032 cm−3 s−1. If we choose
I/I0 = 10−5, the corresponding nucleation rate is about
I = 1027 cm−3 s−1 = 1 × (10 nm)−3 ns−1, which is one
critical nucleus in a simulation box of 10 nm3 per nanosecond
(ns). This nucleation rate is already about 300 times lower
than that in Aga et al’s work [29]. Thus, it is reasonable to
use this value to define the critical spontaneous nucleation rate.
Of course one can choose an even lower nucleation rate such
as I/I0 = 10−7, but it is doubtful that massive nucleation
can take place at such low nucleation rate, not to mention
whether such a low probability event is observable in either
experiments or computer simulations. Therefore, in this work
we use I/I0 = 10−5 as the threshold for the nucleation rate.

Using this nucleation rate as a reference value (the
dashed line in figure 2(a)), we estimated that the spontaneous
nucleation temperature should be about 0.437 ε/kB (or
0.71Tm) for the interfacial free energy from our earlier
calculation, 0.40 ε/kB (or 0.65Tm) for Turnbull’s estimated
value and about 0.353 ε/kB (or 0.57Tm) for the other
methods. For comparison, we also took a lower bound
at I/I0 = 10−6. The spontaneous nucleation temperature
is about 0.456 ε/kB (or 0.74Tm), 0.425 ε/kB (or 0.69Tm)
and 0.387 ε/kB (or 0.63Tm) for the corresponding interfacial
energies, respectively.

3. Simulation method

To test the above results estimated from the model fitting,
independent verification with model-free approaches must
be conducted. To this end, we employed molecular
dynamics (MD) simulations to determine the spontaneous
(homogeneous) crystallization temperature during the process
of cooling a pure LJ liquid. The crystallization in this

test occurs homogeneously as there are no heterogeneous
nucleation sites in the simulation system.

In the MD simulation, first we arranged 2048 solid argon
atoms in an fcc lattice with the equilibrium lattice parameter
at the temperature T = 24 K. Then we heated the system
from this temperature to a high temperature (108 K). The
crystal sample becomes a liquid during the heating process.
We held the sample at this temperature for some time to obtain
a fully equilibrated liquid before we cooled the liquid slowly
from the highest temperature to the initial temperature which
is below the equilibrium melting point (74.2 K). During the
cooling process, the undercooled liquid starts to crystallize
at the spontaneous crystallization temperature. The detailed
description of the heating–cooling process and its effect on the
nucleation is given in section 4.

The interatomic potential used in the simulation is a
standard Lennard-Jones potential, φ(r) = 4ε[(σ/r)12 −
(σ/r)6], where ε/kB = 119.8 K and σ = 3.405 Å. The cutoff
distance was set to 2.5 σ . In some previous work [10, 13],
a continuous function was used to make the LJ potential
approach zero smoothly at the cutoff distance. We used
this potential in an independent simulation to obtain the bulk
properties. We found that the difference in the latent heat
obtained from two potentials is negligible. To suppress the free
surface effects, periodic boundary conditions were applied in
all three Cartesian directions. The simulation was performed
in an isothermal–isobaric ensemble (i.e. an NPT ensemble,
where N is the number of particles, P is the external pressure
and T is the system temperature). In this ensemble, the
Parrinello–Rahman method [31] was used to maintain zero
external pressure and adjust the system volume at different
temperatures. A velocity rescaling method [32] was used to
control the system temperature at every MD step. The MD
time step was set to 5 × 10−15 s. In order to be consistent with
the existing literature data, the standard reduced LJ units [33]
were used in this work: the mass unit was set as the weight of
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one argon atom m, length unit in σ , energy unit in ε, time unit
in τ = √

mσ 2/ε, temperature unit in ε/kB and the interfacial
free energy unit in ε/σ 2.

4. Results and discussion

Figure 2(b) shows the heating and cooling process in our MD
simulation and the anticipated homogeneous crystallization.
First we equilibrated the crystal system at the temperature of
0.2 ε/kB (24 K) for 10 000 MD steps. Then we heated the
crystal from this temperature with an increment of 1.667 ×
10−3 ε/kB (or 0.2 K) every 300 MD steps (or 1.5 × 10−12 s).
So the heating rate is 1.33 × 1011 K s−1. The enthalpy of
the system (per atom) increases with increasing temperature.
At T = 0.75 (90 K), the system enthalpy has an abrupt
jump, indicating melting. This temperature is called the upper
superheating limit as the melting occurs at a higher temperature
above the normal melting point (0.618) due to the absence
of free surface in the system [15]. To have a homogeneous
liquid, the system was heated further to 0.9 (108 K). After
the system was equilibrated for another 10 000 MD steps at
this temperature, it was cooled down to the initial temperature
0.2 with a decrement of 4.167 × 10−4 ε/kB (or 0.05 K)
every 3000 MD steps (or 1.5 × 10−11 s) or a cooling rate of
3.33 × 109 K s−1. In the cooling process, the system enthalpy
decreases with decreasing temperature. Since the system is still
in the liquid state, the liquid enthalpy is higher than that in the
crystal state at the same temperature. At around T = 0.42, the
system enthalpy starts to decrease rapidly and approaches the
crystal enthalpy, indicating that homogeneous crystallization
takes place at this temperature. The onset temperature at
the change of the enthalpy is determined as the spontaneous
crystallization temperature.

From the results we can see that the spontaneous
crystallization temperature obtained from freezing the LJ
liquid (0.42) is close to the theoretical prediction (0.437) using
equation (4) with our calculated interfacial free energy as the
input, whereas it is much higher than the predicted value
(0.353) using the others’ calculated interfacial free energy
as the input. Furthermore, the predicted temperature using
Turnbull’s empirically estimated interfacial free energy (0.40)
is also close to the transition temperature obtained from
the simulation. These results indicate that practically using
the interface free energy obtained from our method as well
as from Turnbull’s estimation one can get the spontaneous
crystallization temperatures close to that obtained from the
independent freezing simulation, while using the interfacial
free energy obtained from the others’ methods one predicts a
lower transition temperature.

The difference in the interfacial free energies among
different methods may be attributed to the following causes.
First, according to the Ostwald rule of stages [34], two or
three surface layers of an fcc crystal nucleus may form a
metastable structure (e.g. bcc-like [35], random hcp [21],
or hybrid fcc and hcp [36]) first before they transform to
a stable fcc structure later during the crystal growth. For
instance, the bcc structure has been verified as the precursor
to fcc crystal growth in both experiments [37] and computer

simulations [35, 38]. Independent calculations show that,
even for the same system, the bcc–melt interfacial free energy
is about 20%–35% smaller than the fcc–melt interfacial free
energy [16, 26, 39]. For other metastable structures (of
lower energy barriers), we also expect similar interfacial
free energy reduction. At deep undercooling, the nucleus
size is very small (typically consisting of fewer than 100
atoms) and the surface to volume ratio is very high. If the
surface layers of a crystal nucleus are dominated by metastable
structures, it is reasonable to expect the crystal–melt interfacial
energy of a small nucleus is lower than that for a planar
interface. Second, at deep undercooling, there may be the so-
called spinodal effect, which could lead to smaller interface
energy [23, 40–42]. Computer simulations [23, 41, 42] and
mean-field theory [40] have shown that, at shallow or moderate
undercooling, the crystallization process follows the classical
nucleation picture (i.e. the nucleation-growth mechanism).
The spontaneously formed nuclei have near-spherical or
ellipsoidal geometries [23, 41]. Deep quenching, however,
may lead to the critical droplets with ramified (nonspherical)
geometries and spatially diffusive (non-compact) nature in
the interfaces [23, 41]. Third, it was found that in both
experiments [43–45] and simulations [15] the crystal–melt
interfacial free energy increases with increasing temperature.
Given the fact that our simulations were performed in a
wide range of supercooled temperatures below the melting
point, while the others’ simulations were performed at the
equilibrium melting temperature, it is reasonable to expect that
their values are higher. For example, by using the temperature-
dependent latent heat as done by other researchers [29],
we have found that our interfacial free energy increases to
0.315 ε/σ 2 at the equilibrium melting temperature [15].
Fourth, according to Tolman [46], the interfacial free energy
is curvature-dependent [47, 48]. In our method, we used
spherical nuclei in a supercooled liquid. Thus, the calculated
interfacial free energy is for curved interfaces, which is more
relevant to homogeneous nucleation at the actual critical
undercooling. As we mentioned before, Baez and Clancy [28]
also found that the interfacial free energy calculated from a
planar interface fails to predict the nucleation rate (of curved
nuclei) at deep undercooling. Due to these reasons, it is
reasonable to see why our interfacial free energy should be
smaller than the others’. Note that this does not mean our
method is more accurate in the interface energy calculation
than the others’ methods. At high temperatures such as the
melting point, the interfacial free energy calculated from the
others’ methods may be more accurate. However, at low
temperatures such as deep undercooling, we think that the
interfacial free energy calculated from a planar interface should
be adjusted to a smaller value in order to correctly fit the
spontaneous nucleation rate. This conclusion is supported by
our results and the others’ work including Aga et al’s recent
work [29] in which they found the crystal–melt interfacial free
energy obtained from the interface fluctuation method should
be lowered to about 20% from the original value in order to fit
the nucleation rates obtained directly from the homogeneous
nucleation simulations. Fifth, the simulation ensemble used
in our work is an N PT ensemble. In this ensemble, the
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Figure 3. Cooling rate dependence on the spontaneous
crystallization temperature. The number of atoms in these
simulations is 2048. (a) The hysteresis loops of the volume per atom
in the heating–cooling process at ten different cooling rates. (b) The
spontaneous crystallization temperature (Tc) as a function of the
cooling rate for the same size system.

system temperature, volume and pressure are well controlled
at the desired conditions, which may not be easily controlled
in other ensembles of finite sizes. As a result, some errors
could be introduced because the crystal–melt interfacial free
energy is very weak. Finally, different approaches have their
own systematic errors and approximations. For example,
Davidchack and coworkers [17, 26] have revisited their
interfacial energy calculation with more accurate control of
parameters and found the new results [17, 26] are about 10%
lower than their previous values [9, 10] obtained from the same
methods. As shown in table 1, their recent results are very close
to Turnbull’s experimental estimation.

Next, we shall address the cooling rate and finite system
size effects in the MD simulation. In order to check the cooling
rate dependence, we fixed the system size at 2048 atoms and
used different cooling rates in our simulations. Figure 3(a)
shows the heating–cooling processes at ten different cooling
rates ranging from 6.67 × 108 to 6.67 × 109 K s−1 with an
increment of 6.67 × 108 K s−1. For the fastest cooling rate
of 6.67 × 109 K s−1, we decreased the system temperature of
8.333 × 10−4ε/kB (or 0.1 K) every 3000 MD steps (or 1.5 ×
10−11 s), and for the slowest cooling rate of 6.67 × 108 K s−1,
we decreased the system temperature of 8.333×10−5 ε/kB (or
0.01 K) every 3000 MD steps (or 1.5 × 10−11 s). We found
that the spontaneous crystallization temperature increases with
decreasing cooling rate: if the cooling rate is 6.67 × 109 K s−1

(fastest), the transition temperature is at 0.405; if the cooling
rate is 6.67 × 108 K s−1 (slowest), the transition temperature is
at 0.435. At each cooling rate, we determined a corresponding
spontaneous crystallization temperature. Figure 3(b) shows
the transition temperature as a function of the cooling rate.
Although the cooling rate dependence shows some variations,
in general the transition temperature varies almost linearly in
the range from 0.40 to 0.45, which is well within the range
of the predictions from equation (4) using our result and
Turnbull’s empirical estimation (also Davidchack et al’s recent

Figure 4. Size dependence on the spontaneous crystallization
temperature. The cooling rate in these simulations is
3.33 × 109 K s−1. (a) The heating–cooling hysteresis loops of
three different size systems. (b) The spontaneous crystallization
temperature (Tc) as a function of the system size at the same
cooling rate.

results [17]) as inputs. On the other hand, the homogeneous
nucleation temperature obtained using the others’ result as
input is outside of this range. It is worth mentioning that, in our
simulations, the slowest cooling rate is 6.67×108 K s−1, which
requires about 30 million MD steps for completing a single
cooling process. It almost reaches the limit of our computing
capacity. However, this cooling rate is still much faster than the
usual cooling rate in a real experiment. Thus, it is reasonable
to predict that the transition temperature may further increase
with the decreasing cooling rate. If this is true, the interfacial
free energy may be even smaller than our result (note our
result is the smallest among different methods). However,
we are unable to predict whether the transition temperature
would keep increasing linearly or approaches a saturated value
eventually. More investigations are needed to determine
the trend of the spontaneous crystallization temperature as a
function of the cooling rate in the future.

Finally, in order to check the finite-size effect, we fixed the
cooling rate at 3.33×109 K s−1 and tested ten different system
sizes ranging from 2048 to 108 000 atoms, as shown in figure 4.
For the sake of clarity, only the results of three representative
size systems are shown in figure 4(a): 2048, 13 500 and
108 000. The spontaneous crystallization temperature only
varies slightly even if the system size increases more than
50 times from 2048 to 108 000 atoms. Apparently, the size
dependence is not as strong as the cooling rate dependence
(figure 3(a)). Honeycutt and Andersen [49] argued that the use
of periodic boundary conditions increases the nucleation rate
in small systems (e.g. N = 500). This is because a crystal
nucleus can easily overlap with its periodic images in small
systems. In our smallest system (N = 2048), the box length
is about 4.3 nm or 12.5 σ . At deep undercooling, the number
of atoms in a critical nucleus is typically fewer than 100 or the
nucleus radius is less than 3.0 σ . Thus, the distance between
this nucleus and one of its periodic images is about 9.5 σ ,
which is much larger than the cutoff distance of the LJ potential
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2.5 σ . This is why we did not see strong finite-size effects on
the spontaneous crystallization temperature. Figure 4(b) shows
the spontaneous crystallization temperature as a function of
system size at the same cooling rate of 3.33 × 109 K s−1. The
spontaneous crystallization temperature scatters from 0.415 to
0.433 and the average temperature is 0.424. Therefore, the
trend of the size dependence is not very clear. We believe
these scattered datum points in figure 4(b) reflect the statistical
nature of homogeneous nucleation, while the linear trend in
figure 3(b) is caused by the cooling rate hysteresis.

5. Conclusions

In this work, we have used classical nucleation theory
as a simple argument to compare the interfacial free
energies calculated through different methods: primarily the
planar-interface-based methods under equilibrium conditions
and the curved-interface-based method under nonequilibrium
conditions. Molecular dynamics simulations of freezing a pure
liquid have been performed as independent tests to compare
the spontaneous crystallization temperatures predicted by the
theory. The finite-size effect and cooling rate effect in freezing
simulations were carefully investigated to ensure the validity of
the independent tests. We found that using the interfacial free
energy obtained from the first method predicts nucleation rate
several orders of magnitude lower than Turnbull’s experimental
results. Using the interfacial free energy calculated from the
second method, the predicted nucleation rate is close to the
experimental value. The possible causes for the discrepancy
are discussed. The discrepancy in the interfacial free energies
between the two methods is most likely caused by the curvature
and temperature dependences of the interfacial free energy as
well as the metastable interface structure at deep undercooling.
Our results suggest that the crystal–melt interfacial free energy
calculated from a planar interface needs to be adjusted to a
smaller value in order to predict correct nucleation rate at deep
undercooling.
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